anonymous
  • anonymous
Solve the differential equation dq/dz = 2 + sin(z) with initial condition q(π) = 2π
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Astrophysics
  • Astrophysics
Dibs
anonymous
  • anonymous
you got it!
Astrophysics
  • Astrophysics
\[dq = 2+\sin(z) dz \implies \int\limits dq = \int\limits (2+\sin(z)) dz\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Astrophysics
  • Astrophysics
separable*
Astrophysics
  • Astrophysics
Integrate it now
anonymous
  • anonymous
alright so i got the portion with 2z-cos(z)
anonymous
  • anonymous
However im missing something
Astrophysics
  • Astrophysics
\[q = 2z-cosz+C\]
Astrophysics
  • Astrophysics
Solve for the constant C using your initial conditions
anonymous
  • anonymous
Thanks!
Astrophysics
  • Astrophysics
Yw :)
anonymous
  • anonymous
Im probably going to have a lot more questions coming too I hate finals!
Astrophysics
  • Astrophysics
Haha, awesome! :P
Astrophysics
  • Astrophysics
separable are one of my fav questions

Looking for something else?

Not the answer you are looking for? Search for more explanations.