Trisarahtops
  • Trisarahtops
Medal!! The radius of a right circular cylinder is increasing at the rate of 3 ft/sec, while the height is decreasing at the rate of 6 ft/sec. At what rate is the volume of the cylinder changing when the radius is 15 ft and the height is 10 ft? Remember to use the product rule when you find the expression for dv/dt. 30 ft3/sec −900 ft3/sec −450π ft3/sec −900π ft3/sec
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Trisarahtops
  • Trisarahtops
@Hero
Trisarahtops
  • Trisarahtops
@Michele_Laino
Trisarahtops
  • Trisarahtops
@ParthKohli

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Trisarahtops
  • Trisarahtops
@pooja195
Michele_Laino
  • Michele_Laino
here we have to start from the formula which expresses the volume \(V\) of the cylinder: \[\huge V = \pi {r^2}h\] now, please write the first derivative of the volume \(V\) with respect to time, using the formula above
Trisarahtops
  • Trisarahtops
(2pi(15)*(3)(10) + (pi 15^2)(-6)
Michele_Laino
  • Michele_Laino
that's right!
Trisarahtops
  • Trisarahtops
I know how to set it up but I keep getting the wrong answer
Michele_Laino
  • Michele_Laino
I thionk it that the answer is right, since we have this first derivative: \[\Large \frac{{dV}}{{dt}} = \pi \left\{ {2r\left( {\frac{{dr}}{{dt}}} \right)h + {r^2}\left( {\frac{{dh}}{{dt}}} \right)} \right\}\] now, if you replace the data of the exercise, you will find your answer above
Michele_Laino
  • Michele_Laino
oops.. I think*
Trisarahtops
  • Trisarahtops
so far i got this 30(30)+ -1350
Trisarahtops
  • Trisarahtops
so -450?
Trisarahtops
  • Trisarahtops
@Michele_Laino
Trisarahtops
  • Trisarahtops
if that right can you help me with one more?

Looking for something else?

Not the answer you are looking for? Search for more explanations.