theslytherinhelper
  • theslytherinhelper
Implicit Differentiation
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
theslytherinhelper
  • theslytherinhelper
theslytherinhelper
  • theslytherinhelper
I'm trying to understand, so I put the derivative of y^4 in my calculator and it keeps giving me zero?
theslytherinhelper
  • theslytherinhelper
I have 10x + ___ = 0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

TrojanPoem
  • TrojanPoem
5x^2 + y^4 = -9 10x + 4y^3 * dy/dx = 0 10 + 12y^2 * (dy/dx)^2 + 4y^3 * d2y/dx2 = 0
TrojanPoem
  • TrojanPoem
Find the value of dy/dx from the 1st eqn , substitute in the second.
theslytherinhelper
  • theslytherinhelper
This is probably a really silly question, but where did the (dy/dx)^2 come from?
theslytherinhelper
  • theslytherinhelper
The only part that I'm getting from the second derivative is the 10 + 12y^2. Am I meant to add the first derivative?
theslytherinhelper
  • theslytherinhelper
I solved and got -5x/2y^3
TrojanPoem
  • TrojanPoem
10x + 4y^3 * dy/dx = 0 when differentiating this, it's the same as the product of two functions y * dy/dx -> derivative of y = dy/dx = (dy/dx)^2 when you derive the first derivative you get the second one dy/dx = dy2/d2x

Looking for something else?

Not the answer you are looking for? Search for more explanations.