Ranya99
  • Ranya99
A child pulls on a toy locomotive of mass 0.979 kg with a force of 3.25 N at an angle of 42º off the ground. The locomotive is connected to two train cars by cables. Friction in the axles results in an effective coefficient of kinetic friction between the floor and the train which is 0.110. One car has a mass of 0.952 kg and the other has a mass of 0.419 kg. (a) What is the acceleration of the train? (b) What is the tension in the cable between the locomotive and the car connected to the locomotive?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Ranya99
  • Ranya99
1 Attachment
Ranya99
  • Ranya99
@Michele_Laino
Michele_Laino
  • Michele_Laino
here we can compute the total friction force, which is: \[\large \begin{gathered} R = \mu \left\{ {\left( {{m_1} + {m_2} + {m_3}} \right)g - F\sin 42} \right\} = \hfill \\ \hfill \\ = 0.11\left\{ {\left( {0.979 + 0.952 + 0.419} \right) \cdot 9.81 - 3.25\sin 42} \right\} = ...? \hfill \\ \end{gathered} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
please try to do such computation
Ranya99
  • Ranya99
@Michele_Laino so I'll just calculate it and get the answer
Michele_Laino
  • Michele_Laino
hint: the requested acceleration, is given by the subsequent formula: \[\Large a = \frac{{\left( {F \cdot \cos 42} \right) - R}}{{{m_1} + {m_2} + {m_3}}}\]
Ranya99
  • Ranya99
a=(F⋅cos42)−R/m 1 +m 2 +m 3 [a=(-3.25*cos42)-2.86/ 0.979+0.952+0.419\]
Ranya99
  • Ranya99
@Michele_Laino so now I just solve it like that?
Michele_Laino
  • Michele_Laino
I got \(R=2.29\), please check such value. So, we have to compute this: \[\Large \begin{gathered} a = \frac{{\left( {F \cdot \cos 42} \right) - R}}{{{m_1} + {m_2} + {m_3}}} = \hfill \\ \hfill \\ = \frac{{\left( {3.25 \cdot \cos 42} \right) - 2.29}}{{0.979 + 0.952 + 0.419}} = ...? \hfill \\ \end{gathered} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.