anonymous
  • anonymous
Solve : 9^x=45 Help ASAP
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
MrCoolGuy
  • MrCoolGuy
x=log45/2log3
anonymous
  • anonymous
is that the answer or i solve for that
MrCoolGuy
  • MrCoolGuy
its the answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
can you show me the steps?
anonymous
  • anonymous
@MrCoolGuy
SolomonZelman
  • SolomonZelman
\(\Large \color{#000000 }{ \displaystyle a^{\color{red}{b}} =c}\) \(\Large \color{#000000 }{ \displaystyle \log_a( a^{\color{red}{b}} )=\log_a(c)}\) \(\Large \color{#000000 }{ \displaystyle \color{red}{b}\log_a( a)=\log_a(c)}\) \(\Large \color{#000000 }{ \displaystyle \color{red}{b}=\log_a(c)}\)
lvana
  • lvana
I hope this makes it a little easier on the eyes, but according to @SolomonZelman reference, you should be able to apply the rule flawlessly.~
anonymous
  • anonymous
oh so it is right thank you
SolomonZelman
  • SolomonZelman
If you apply the rules of logarithms\( ; \) ■ Rule 1: \(\color{#000000 }{ \displaystyle \log_x (x)=1}\) (for positive x, except x=1) ■ Rule 2: \(\color{#000000 }{ \displaystyle \log_x (x^y)=y\times \log_x(x) }\) (for all exponents "y", the exponent goes on outside as shown)
SolomonZelman
  • SolomonZelman
If you want examples, proves, or other references of anything, let me know.
ryandane
  • ryandane
O.O

Looking for something else?

Not the answer you are looking for? Search for more explanations.