Questions Answered

Hannah_Ahn:
Group Title
GR.12 MATH: please help // If y3, y, and 3y+4 are consecutive terms in a geometric sequence, determine the value(s) of y.
 updated 2 years ago
 4 replies
 1 Medal

Hannah_Ahn:
Group Title
if a=x and t_{4}=2sqrt{2}x ^{4} of a geometric sequence, find t_{9}
 updated 2 years ago
 7 replies
 1 Medal

Hannah_Ahn:
Group Title
math 12 geometric sequences.
which term has the value of 7over1024 in the geometric sequence 28,14,7
 updated 2 years ago
 6 replies
 3 Medals

Hannah_Ahn:
Group Title
Math12: Geometric Sequences
The first three terms of a geometric sequence are
sqrt[4]{3},sqrt[8]{3}, and 1.
…
 updated 2 years ago
 8 replies
 1 Medal

Hannah_Ahn:
Group Title
THE KITE RUNNER: I will need to facilitate a thoughtprovoking group discussion of a theme "Power". Any ideas? and any open questions?
t…
 updated 2 years ago
 2 replies
 1 Medal

Hannah_Ahn:
Group Title
THE KITE RUNNER:
I will need to facilitate a thoughtprovoking group discussion of a theme "Power".
Any ideas? and any open questions?
…
 updated 2 years ago
 4 replies
 1 Medal

Hannah_Ahn:
Group Title
use the power and root laws to simplify and then evaluate.
\[\log_{3}8^{25} \]
 updated 2 years ago
 8 replies
 1 Medal

Hannah_Ahn:
Group Title
solve algebraically for x:
4sin^2x=3tan^21
…
 updated 2 years ago
 50 replies
 2 Medals

Hannah_Ahn:
Group Title
which expression is equivalent to
\[(\sin^2\beta\cos^2\beta)^2  \sin^22\beta\]?
…
 updated 2 years ago
 5 replies
 2 Medals

Hannah_Ahn:
Group Title
simplify:
sin[(3pi over 2)+x)]
 updated 2 years ago
 15 replies
 1 Medal

Hannah_Ahn:
Group Title
solve:
sin^2x=sinxcosx
 updated 2 years ago
 6 replies
 4 Medals

Hannah_Ahn:
Group Title
prove.
sin [(pi over 4)+x] + sin [(pi over 4)x] = sqrt{2} cosx
 updated 2 years ago
 9 replies
 4 Medals

Hannah_Ahn:
Group Title
Solve algebraically. Express the roots in exact form. 2sinxcosx1 = 0
the answer is pi over 4 + n pi…
 updated 2 years ago
 7 replies
 2 Medals

Hannah_Ahn:
Group Title
prove
1+sin2x=(sinx=cosx)^2
 updated 2 years ago
 11 replies
 5 Medals

Hannah_Ahn:
Group Title
prove:
(sin2x over 22cos^2x) = cotx
 updated 2 years ago
 4 replies
 1 Medal

chrissyj:
Group Title
How many solutions does this system have?
2x+y=3
6x=93y…
 updated 2 years ago
 3 replies
 2 Medals

qudrex:
Group Title
What is the solution of the system?
7x + 5y = 19 …
 updated 2 years ago
 4 replies
 No Medals Yet

Hannah_Ahn:
Group Title
prove the identity:
\left( sec x  cos x over tan x \right) = sin x
I cannot solve it alone! :( …
 updated 2 years ago
 8 replies
 3 Medals

Hannah_Ahn:
Group Title
prove the identity:
\[\cos x + \sin x \tan x \over \sin x \sec x \] = csc x
 updated 2 years ago
 8 replies
 4 Medals

Hannah_Ahn:
Group Title
prove the identity
\[\left( \cos x \over 1 +\sin x \right)=\left( 1\sin x \over \cos x \right)\]
 updated 2 years ago
 9 replies
 4 Medals

Lili_Perez:
Group Title
ok out of topic but wut is luv to u? my bf. wants to know how i responde to that and i wanna make it sweet plzz ideas
 updated 2 years ago
 22 replies
 5 Medals

Hannah_Ahn:
Group Title
prove the identity:
1 over sec x + tan x
=…
 updated 2 years ago
 10 replies
 1 Medal

Hannah_Ahn:
Group Title
prove the identity: csx^2(x)+sec^2(x) = csc^2(x)sec^(x)
 updated 2 years ago
 2 replies
 1 Medal

Hannah_Ahn:
Group Title
prove the identity: [\left( \cos2x \over \sin x \right) = \left( \cot^2x1 \over \csc x \right)\]
 updated 2 years ago
 26 replies
 2 Medals

Hannah_Ahn:
Group Title
prove the identity:
\[\left( \cot x  1 \over 1  \tan x\right) = \left( \csc x \over \sec x \right)\]
 updated 2 years ago
 5 replies
 1 Medal

Hannah_Ahn:
Group Title
Prove the identity
\[\left( \cot \theta \over \sin \theta  \csc \theta \right) = \sec \theta\]
 updated 2 years ago
 6 replies
 1 Medal

Hannah_Ahn:
Group Title
Prove the identity
\[\left( \sin2x \over 1+\cos2x \right) = \left( \sec ^{2}x1 \over \tan x \right)\]
 updated 2 years ago
 5 replies
 1 Medal

Hannah_Ahn:
Group Title
prove the identity
csc theta over tan theta + cot theta = cos theta…
 updated 2 years ago
 37 replies
 2 Medals

anniepilones:
Group Title
Find the number of halve in 6/7?
 updated 2 years ago
 5 replies
 2 Medals

Hannah_Ahn:
Group Title
Prove the identity.
\[1 \over 1+\sin \theta\]=\[\sec ^{2} \theta\] \[ \tan \theta \over \cos \theta\]
 updated 2 years ago
 53 replies
 8 Medals
 > Older questions