Questions Asked

MathSofiya:
Group Title
Solve using variation of parameters
\[y''2y'+y=e^{2x}\]
 updated one year ago
 76 replies
 2 Medals

MathSofiya:
Group Title
\[y''+y'2y=x+sin2x\]
\[y(0)=1\]
\[y'(0)=0\]…
 updated one year ago
 91 replies
 3 Medals

MathSofiya:
Group Title
When I have
\[y''+y'2y=sin2x\]
\[y_p(x)=Acos2x+Bsin2x\]?
…
 updated one year ago
 3 replies
 No Medals Yet

MathSofiya:
Group Title
\[y''+2y'+y=xe^{x}\]
\[r^2+2r+1=0\]
\[y_c = c_1 e^{x} + c_2 x e^{x}\]
…
 updated one year ago
 18 replies
 1 Medal

MathSofiya:
Group Title
\[y''+2y'+y=xe^{x}\]
\[r^2+2r+1=0\]
\[r_1=r_2=1\]
…
 updated one year ago
 47 replies
 4 Medals

MathSofiya:
Group Title
\[y''+6y'+9y=1+x\]
\[r_1=r_2=3\]
\[y_c=c_1e^{3x}+c_2xe^{3x}\]
…
 updated one year ago
 2 replies
 2 Medals

MathSofiya:
Group Title
A=0 really?
\[y''+9y=e^{3x}\]
\[y_c(x)=c_1cos3x+c_2sin3x\]…
 updated one year ago
 5 replies
 No Medals Yet

MathSofiya:
Group Title
In this next example, why do we add "A" to the RHS and not the LHS. I'm trying to understand nonhomogenous DE...sigh :(
\[y''+4y=e^{3x}\]
…
 updated one year ago
 61 replies
 1 Medal

MathSofiya:
Group Title
\[y''+y'2y=x^2\]
\[2A+(2Ax+B)2(Ax^2+Bx+C)=x^2\]
2A=1
…
 updated one year ago
 9 replies
 1 Medal

MathSofiya:
Group Title
\[y_P(x)=Ax^2+Bx+C\]
\[y'_P=2Ax+B\]
…
 updated one year ago
 5 replies
 2 Medals

MathSofiya:
Group Title
silly question
Why is x^2+4=0 x=+/2i
 updated one year ago
 12 replies
 1 Medal

MathSofiya:
Group Title
Non Homogeneous Linear equations
\[y''+4y=e^{3x}\]
I understand that the auxiliary equation is
…
 updated one year ago
 9 replies
 1 Medal

MathSofiya:
Group Title
\[y''3y'+2y=0\]
y(0)=1 y(3)=0
auxiliary equation
…
 updated one year ago
 18 replies
 1 Medal

MathSofiya:
Group Title
solve the boundary value problem if possible.
\[y''3y'+2y=0\]
y(0)=1 y(3)=0
…
 updated one year ago
 43 replies
 2 Medals

MathSofiya:
Group Title
\[4y''4y'+y=0\]
y(0)=1 y'(0)=1.5
auxiliary equation
…
 updated one year ago
 20 replies
 2 Medals

MathSofiya:
Group Title
Am I correct?
http://openstudy.com/users/mathsofiya#/updates/5043fcebe4b0a71fb32afcf6
 updated one year ago
 No Medals Yet

MathSofiya:
Group Title
\[y''+3y=0\]
\[y(0)=1\]
\[y'(0)=3\]
…
 updated one year ago
 6 replies
 2 Medals

MathSofiya:
Group Title
I'm kinda stuck
Solve the initial value problem
\[y''+3y=0\]…
 updated one year ago
 20 replies
 1 Medal

MathSofiya:
Group Title
Let's see how I did...
\[y''+3y'=0\]
\[r^2+3r=0\]
…
 updated one year ago
 5 replies
 1 Medal

MathSofiya:
Group Title
How did I do?
2nd order DE
\[25y''+9y=0\]…
 updated one year ago
 23 replies
 2 Medals

MathSofiya:
Group Title
\[y''4y'+y=0\]
auxiliary equation
\[r^24r+1=0\]
…
 updated 2 years ago
 15 replies
 3 Medals

MathSofiya:
Group Title
How did I do? Second Order Differential equations
\[y''  8y' + 12y = 0\]
the auxiliary equation is …
 updated 2 years ago
 20 replies
 2 Medals

MathSofiya:
Group Title
Big Round of Applause!!!!
secondorder linear equations
\[y''+4y'+4y=0\]…
 updated 2 years ago
 30 replies
 3 Medals

MathSofiya:
Group Title
I have the image uploaded now....
can I use wolf to graph this?
 updated 2 years ago
 22 replies
 2 Medals

MathSofiya:
Group Title
the vector \[e_v\] is a unit vector of v I guess
\[\vec v=<3,1>\]
…
 updated 2 years ago
 4 replies
 2 Medals

MathSofiya:
Group Title
Here is my sketch of the vector
\[\vec v \vec w\]
where
…
 updated 2 years ago
 10 replies
 1 Medal

MathSofiya:
Group Title
This is how the vector
\[v=<3,1>\]
is drawn?
…
 updated 2 years ago
 7 replies
 1 Medal

MathSofiya:
Group Title
f(x,y)=sinx+siny
Plot the gradient vector field of "f" together with a contour map of "f". Explain how they are related
to each other. …
 updated 2 years ago
 3 replies
 1 Medal

MathSofiya:
Group Title
how can I determine what x and y is from this:
\[\hat r t=<t+sin\frac12 \pi t+cos \frac12 \pi t>\]
 updated 2 years ago
 20 replies
 4 Medals

MathSofiya:
Group Title
Use a calculator or CAS to evaluate the line integral correct to four decimal places.
\[\int_c F\cdot dr\]
where
…
 updated 2 years ago
 25 replies
 3 Medals
 < Newer questions
 > Older questions